Skip to contents

This function can be used to spatially visualise the library size, biology or batch specific effect modelled for each gene.

Usage

plotCovariate(spe, covariate = c("biology", "ls", "batch"), ...)

Arguments

spe

a SpatialExperiment object.

covariate

a character, specifying the type of covariate to be plot: "biology" (default), "ls" to plot the library size effect, and "batch" to plot the batch-specific effect.

...

additional parameters to be passed to the plotSpatial function.

Value

a ggplot2 object

Examples

library(SpatialExperiment)
library(ggplot2)

data(HumanDLPFC)
# \donttest{
HumanDLPFC = SpaNorm(HumanDLPFC, sample.p = 0.05, df.tps = 2, tol = 1e-2)
#> (1/2) Fitting SpaNorm model
#> 201 cells/spots sampled to fit model
#> iter:  1, estimating gene-wise dispersion
#> iter:  1, log-likelihood: -1149654.530080
#> iter:  1, fitting NB model
#> iter:  1, iter:  1, log-likelihood: -1149654.530080
#> iter:  1, iter:  2, log-likelihood: -817133.743703
#> iter:  1, iter:  3, log-likelihood: -728255.929110
#> iter:  1, iter:  4, log-likelihood: -712315.325925
#> iter:  1, iter:  5, log-likelihood: -710016.017096
#> iter:  1, iter:  6, log-likelihood: -709613.773963
#> iter:  1, iter:  7, log-likelihood: -709519.701194
#> iter:  1, iter:  8, log-likelihood: -709487.815306 (converged)
#> iter:  2, estimating gene-wise dispersion
#> iter:  2, log-likelihood: -708972.165863
#> iter:  2, fitting NB model
#> iter:  2, iter:  1, log-likelihood: -708972.165863
#> iter:  2, iter:  2, log-likelihood: -708655.957792
#> iter:  2, iter:  3, log-likelihood: -708639.165945 (converged)
#> iter:  3, log-likelihood: -708639.165945 (converged)
#> (2/2) Normalising data
# plot spatial region annotations
p1 <- plotCovariate(HumanDLPFC, covariate = "biology", colour = ENSG00000075624) +
  scale_colour_viridis_c(option = "F")
p1


p2 <- plotCovariate(HumanDLPFC, covariate = "ls", colour = ENSG00000075624) +
  scale_colour_viridis_c(option = "F")
p2

# }