An S4 class to store a SpaNorm model fit
Slots
ngenesa numeric, specifying the number of genes in the dataset.
ncellsa numeric, specifying the number of cells/spots in the dataset.
gene.modela character, specifying the gene-specific model to used (see
getGeneModels()).df.tpsan integer, specifying the degrees of freedom to used for the thin plate spline.
sample.pa numeric, specifying the proportion of samples used to approximated the model.
lambda.aa numeric, specifying the shinkage parameter used.
batcha vector or matrix, specifying the batch design used (if any).
Wa matrix, specifying the covariate matrix of the linear model.
alphaa matrix, specifying the coefficients of the linear model.
gmeana numeric, specifying the mean estimate for each gene in the linear model.
psia numeric, specifying the over-dispersion parameter for each gene if a negative binomial model was used (or a vector of NAs if another gene model is used).
wtypea factor, specifying the covariate types of columns in the covariate matrix, W. These could be "biology", "ls", or "batch".
loglika numeric, specifying the log-likelihood of the model at each external iteration.
samplinga factor, specifying the cells/spots used for dispersion estimation ('dispersion'), GLM fitting ('glm' and 'dispersion'), all other cells/spots ('all').
Examples
example(SpaNorm)
#>
#> SpaNrm> data(HumanDLPFC)
#>
#> SpaNrm> ## No test:
#> SpaNrm> ##D SpaNorm(HumanDLPFC, sample.p = 0.05, df.tps = 2, tol = 1e-2)
#> SpaNrm> ## End(No test)
#> SpaNrm>
#> SpaNrm>
#> SpaNrm>